
Oct 29, 2006 19:02 1 abcm2ps−5.1.1

Creating new symbols in abcm2ps
Hudson Lacerda (2004−2005)

English version by Eduardo Vieira da Silva (2006)

(Re)definition of the PostScript operators
The score generator abcm2ps  enables the creation and modification of PostScript
operators. This is a very useful resource for customizing scores, as well as introducing nonexistent
symbols in the program.

In order to send a line of PostScript to the output, you can simply use %%postscript  in the
file ABC.

The example below changes the thickness of the staff line by redefining the operator dlw
generated by abcm2ps :

%%postscript /dlw {2.5 setlinewidth} def

original dlw (0.7pt)

4
4

redefined dlw (2.5pt)

4
4

The following example redefine the operator r4  − which draws the fourth note rest by using the
eighth note rest as a base (r8 ).

%%postscript /r4{gsave translate [−1 0 0 1 0 0] concat 0 0 r8 grestore}def

original r4

4
2

redefined r4 (mirrored eighth note)

4
2

A PostScript code can be very useful for inserting drawings in a very accurate position in relation
to the note. The example below enables the writing of commands in an annotation (annotation).
The annotation text must begin with the character ‘:’  so that it may be interpreted as a command

%%postscript /cp {currentpoint}!
%%postscript /anshow { dup 0 get (:) 0 get ne
%%postscript     {/gchshow load cshow}
%%postscript     {dup length 1 sub 1 exch getinterval cvx exec}ifelse}!

By including the above code in the beginning of anABC file, you can run commands like the
following ones:

X:1
T:Commands in annotations
K:C
"@0,0:cp newpath 10 360 0 arcn stroke"CDEF \
"@0,0:cp newpath 15 360 0 arcn stroke"GFED |\
"@0,0:cp /yy exch def /xx exch def"C2 E2 \
"@0,0:gsave xx yy lineto 2 setlinewidth stroke grestore"G4|

4
4



Oct 29, 2006 19:02 2 abcm2ps−5.1.1

New symbols (%%deco)
Besides the possibilities that were already shown in the given examples, abcm2ps  allows the
addition of new decorations (symbols such as accents, dynamic, articulations, etc.). This is done
through the command %%deco. The syntax is the following:

%%deco <name> <type> <ps> <height> <widthL> <widthR> [text]

<name> is the symbol identifier;

<type>  is a number form 0 to 7 which defines the type of symbol;

<ps>  is the name of the PostScript operator to be run;

<height>  is the vertical space taken by the symbol in points;

<widthL>  and <widthR>  indicates the left and right space of the symbol  (Since
abcm2ps−4.8.2 , it has only worked for type 6 decorations);

[text]  is a (optional) text to be used by the PostScript operator  (used only by type 3, 4 and 6
decorations).

The <type>  of the symbols defines its positioning

0:  close to the note head, like !tenuto!  or .  (staccato);
2:  on the left of a note head, like !slide! ;
2:  on the left of a chord, like !arpeggio! ;
3, 4:  generic expressions above and below the staff;
5:  long symbol above the staff, like !trill(!  or !trill)! ;
6:  generic (usually below the staff);
7:  long symbol below the staff, like !crescendo(!  or !crescendo)! .

Symbols of the 0 through 2 type are associated with the notes, and are placed within the staff. Types
3 to 5 are placed outside the staff, although they are associated with the notes. In turn, the types 6
and 7 are associated to the staff.

There is steel another special category of decorations: when its <name> begins with head− ,
the decoration replaces the note head in which it is used.

How to create a type 0 decoration
Type 0 decorations are placed close to the note head Two examples are !tenuto!  and !dot! .
The PostScript operator must use two arguments: the coordinates <x>  and <y> , which
determine the position of the symbol The command %%deco must not make use of the
[text]  argument.

Here is an example (close to the note head):

%%postscript /example0 {  moveto
%%postscript              −3 −2 rmoveto
%%postscript               6  2 rlineto
%%postscript              −6  2 rlineto
%%postscript              stroke
%%postscript           } def

%%deco ex0 0 example0 5 0 0

X:1
K:C
!ex0!DEFG !ex0!ABcd | GAB!ex0!c def!ex0!g |

4
4



Oct 29, 2006 19:02 3 abcm2ps−5.1.1

How to create a type 1 decoration
Type 1 decorations are placed on the left of the note head An example is !slide! . Just like the
procedure for type 0, PostScript operator must use two arguments: the coordinates a<x>  and
<y> , which determine the position of the symbol The command %%deco must not make use
of the  [text]  argument. The argument <height>  is irrelevant, which can simply be zero.
Notice that the position of the symbol is affected by the presence of an accidental.

Here is an example (half moon on the left of the note):

%%postscript /example1 {  newpath
%%postscript              exch 1 add exch
%%postscript              5 100 260 arc
%%postscript              1.2 setlinewidth stroke dlw
%%postscript           } def

%%deco ex1 1 example1 0 0 0

X:1
K:C
CD!ex1!^D!ex1!E ed!ex1!_d!ex1!c |

4
4

How to create a type 2 decoration
Type 2 decorations are placed on the left of chord and their height spans the whole extent of the
chord. An example is !arpeggio! .

The PostScript operator must use three argument: the minimum height of the symbol and vertical
and horizontal coordinates of the lowest symbol.

The command %%deco must not make use of the [text]  argument The The <height>
height is used to define the minimal height of the symbol (since abcm2ps−4.8.8 ).

The positioning of the symbol is affected by the presence of accidentals.

Here is an example (brace):

%%postscript /exemplo2 {   moveto
%%postscript               4 0 rmoveto
%%postscript              −4 0 rlineto 0 exch rlineto
%%postscript               4 0 rlineto 1.6 setlinewidth stroke dlw
%%postscript           } def

%%deco ex2 2 exemplo2 6 0 0

X:1
L:1/4
K:C
!ex2!C !ex2![CEG] !ex2![C_EG] !ex2![^G,=g] |\
!ex2!c !ex2![ceg] !ex2![c_eg] !ex2![^G=g’] |

4
4



Oct 29, 2006 19:02 4 abcm2ps−5.1.1

How to create a type 3 decoration
Type 3 decorations are usually placed above the staff. Some examples are: !accent! , !segno!
e !mordent! . The PostScript operator must use two or three arguments: the horizontal and
vertical coordinates and, optionally, a text string (in case %%deco command should use the
argument [text] ).

Here is an example (not−accent):

%%postscript /exemplo3a {  newpath
%%postscript               7.5 add
%%postscript               5 180 360 arc
%%postscript               stroke
%%postscript            } def

%%deco ex3a 3 exemplo3a 10 0 0

X:1
K:C
!ex3a!CDEF !ex3a!FEDC | !ex3a!cdef !ex3a!fedc | 

4
4

Now an example with text (string indications):

%%postscript /exemplo3b {  4 add 2 copy
%%postscript               newpath 4 add 7 0 360 arc stroke
%%postscript               moveto
%%postscript               /Helvetica−Bold 12 selectfont
%%postscript               showc
%%postscript            } def

%%deco ex3b_E 3 exemplo3b 16 0 0 E
%%deco ex3b_B 3 exemplo3b 16 0 0 B
%%deco ex3b_G 3 exemplo3b 16 0 0 G
%%deco ex3b_D 3 exemplo3b 16 0 0 D
%%deco ex3b_A 3 exemplo3b 16 0 0 A

X:1
L:1/1
K:C treble−8
!ex3b_E!e !ex3b_B!B !ex3b_G!G !ex3b_D!D !ex3b_A!A, !ex3b_E!E, |

8

4
4

E B G D A E

How to create a type 4 decoration
Type 3 decorations are usually placed below the staff.

Just like the procedure for types 3 and 6, the PostScript operator must use two or three
arguments: the horizontal and vertical coordinates and, optionally, a text string (in case,
%%deco command should use a the argument [text] ).

An example of its utilization is the creation of symbols for dynamics that are close to the notes
(instead of being horizontally aligned). The pf operator from abcm2ps  (fit for printing dynamics
symbols) is used in the following example. (See also ‘‘How to create a type 6 decoration.)



Oct 29, 2006 19:02 5 abcm2ps−5.1.1

%%deco ex4 4 pf 20 0 0 p

X:1
K:C treble
!ex4!E,Gd!ex4!f’ |

4
4

p
p

How to create a type 6 decoration
Type 3 decorations are usually placed below the staff. Typical examples are the dynamics symbols,
such as: !p! , !mf!  and !ff! .

Just like the procedure for types 3 and 4, the PostScript operator must use two or three
arguments: the horizontal and vertical coordinates and, optionally, a text string (in case,
%%deco command  should use the argument [text] ).

A simple and useful example is the implementation of the dynamics mp. The pf  operator from
abcm2ps  (fit for printing dynamics symbols) is used in the following example. Notice that
the type 6 decorations, unlike type 4, are horizontally aligned

%%deco ex6 6 pf 20 10 8 mp

X:1
K:C treble
!ex6!E,Gd!ex6!f’ |

4
4

mp mp

How to create a type 5 decoration
Type 5 decorations are long signs placed above the staff. An example is the long trill starting with
!trill(!  and ending with !trill)! .

In the decoration which starts the symbol, the field <ps>  (PostScript operator) of the
3%%deco, must be ‘−’ . The <name> of the initial decoration typically ends with ‘(’ ,
where as the name of the final decoration ends with ‘)’ .

The PostScript operator of the final decoration is the one in charge of the drawing, and receives
three arguments: the span of the symbol and the horizontal and vertical coordinates of the first part
of the symbol.

Here is an example (Ottava brackets):



Oct 29, 2006 19:02 6 abcm2ps−5.1.1

%%postscript /exemplo5 {
%%postscript              moveto −3 3 rmoveto
%%postscript              /Times−BoldItalic 12 selectfont (8) show
%%postscript              gsave
%%postscript                 2 6 rmoveto
%%postscript                 [3] 0 setdash 12 add 0 rlineto
%%postscript                 currentpoint stroke
%%postscript                 moveto [] 0 setdash 0 −3 rlineto stroke
%%postscript              grestore
%%postscript           } def

%%deco ex5( 5 − 10 0 0
%%deco ex5) 5 exemplo5 20 0 0

X:1
K:C
cdefgab!ex5(!cdefgab!ex5)!c’ |

4
4

8

How to create a type 7 decoration
Type 7 decorations are long signs placed below the staff, such as the dynamics symbols
!crescendo(! , !crescendo)! , !diminuendo(!  and !diminuendo)! .

They are created in the same way as the type 5 decorations, except that the type 7 decorations are
printed below the staff.

Here is an example (Ottava bassa):

%%postscript /exemplo7 {
%%postscript              moveto −6 3 rmoveto
%%postscript              /Times−BoldItalic 12 selectfont (8) show
%%postscript              gsave
%%postscript                 2 2 rmoveto
%%postscript                 [3] 0 setdash 12 add 0 rlineto
%%postscript                 currentpoint stroke
%%postscript                 moveto [] 0 setdash 0 3 rlineto stroke
%%postscript              grestore
%%postscript           } def

%%deco ex7( 7 − 10 0 0
%%deco ex7) 7 exemplo7 20 0 0

X:1
K:C
cBAGFED!ex7(!cBAGFED!ex7)!C |

4
4

8

How to create a head−xxx (note head) decoration
A decoration whose <name> begins with head−  replaces the note head in which it is used.
head−xxx  decorations are declared as being of any type (from 0 through 7), using the proper
parameters for the specified type.



Oct 29, 2006 19:02 7 abcm2ps−5.1.1

Two useful examples are the diamond shaped note heads (harmonic) and in the shape of x
(percussion). In this example, the x  is actually a double sharp (drawn by the PostScript
operator dsh0 , generated by abcm2ps ). Notice also the effect of a head−xxx  decoration
in a chord: it is applied to all the notes of the chord.

%%postscript /harm{gsave T 40 rotate
%%postscript 	           .25 dup setlinewidth
%%postscript 	           −3 2.3 3 −1 roll 2 div sub M 6 0 RL
%%postscript 	           0 −4.6 RM                   −6 0 RL
%%postscript 	           stroke
%%postscript             1.4 dup setlinewidth
%%postscript 	           3 1 index 2 div sub 2.3 M 0 −4.6 RL
%%postscript             −6 add 0 RM               0  4.6 RL
%%postscript 	           stroke
%%postscript       grestore}!

%%deco head−h 0 harm 0 0 0
%%deco head−x 0 dsh0 0 0 0

X:1
K:C
!head−x!B!head−h!G!head−x!D[Ce]−[Ce]2 !head−h![gbe’]2 |

4
4

Decorations in single notes in chords
A decoration can be applied to a single note of a chord (i.e. a note inside ‘[’  and ‘]’ ). In this
case, a regular decoration could be misplaced. Therefore you should resort to a special PostScript
operator (and a special decoration) in order to use it in a single note of a chord.

As an example, a mordent (based on the lmrd  operator of abcm2ps ) which is positioned on
the left of the note head The symbol was declared as a type 1 decoration in order to gain a little bit
of space on the left.

%%postscript /morde{exch 11 sub exch 4 sub lmrd}!

%%deco morde 1 morde 0 0 0

X:1
K:C
[CG!morde!ce]2 [G,GBd]2 [A,E!morde!Ac]4 |

4
4

Microtonal accidentals
With abcm2ps  it is possible to have special accidentals for microtonalism. Micro tonal
pitches are indicated by a fraction after an accidental, like ^3/4c . By default, the numerator is
set to 1, and the denominator to 2 (^/c  is the same as ^1/2c ). The numerator and denominator
must be whole numbers from one to 256.

1/2 and 3/2 sharps or flats are supported (for quarter−tones). For other values, new PostScript
operators must be created (with %%postscript ). The name of a PostScript operator for an
accidental must be:



Oct 29, 2006 19:02 8 abcm2ps−5.1.1

<accidental_type><micro_value>

where <accidental_type>  will be: sh  (sharp), ft  (flat), nt  (natural), dsh  (double
sharp) or dft  (double flat).

<micro_value>  is a number calculated from the fraction as:

(numerator−1)*256 + (denominator−1) .

In the following example, the first line of music employs the accidentals which are available in
abcm2ps . The second line employs alternative accidentals: a combination of a sharp or a flat
with an arrow In the ABC code for this example, an accidental with 9/  (or 9/2 ) uses an
up arrow, and an accidental with 6/  (or 6/2 ) uses a down arrow.

Notice the value of <micro_value>  within the name of the PostScript operators, calculated
for the fractions 9/2  and 6/2 :

( 9−1)*256 + ( 2−1) = 2049

( 6−1)*256 + ( 2−1) = 1281

Here is the code:

%%postscript /seta {M 1.7 −7 RL −3.4 0 RL fill}!
%%postscript /sh2049 {2 copy sh0 exch 1.5 add exch 15 add seta}! % ^9/2
%%postscript /sh1281 {2 copy sh0 exch 1.2 sub exch 15 sub        % ^6/2
%%postscript          gsave T 180 rotate 0 0 seta grestore}!
%%postscript /ft2049 {2 copy ft0 exch 1.8 sub exch 14 add seta}! % _9/2
%%postscript /ft1281 {2 copy ft0 exch 1.8 sub exch 11 sub        % _6/2
%%postscript          gsave T 180 rotate 0 0 seta grestore}!

X:1
M:none
L:1/2
K:C
=C  ^/C ^C ^3/C =D  _/D _D _3/D =C |
=C ^6/C ^C ^9/C =D _9/D _D _6/D =C |

Some special operators

defl
The operator defl  (introduced with abcm2ps−4.8.0 ) is a flag, which indicates:

− the state of a type 5 or 7 decoration (beginning or ending);

− the direction of the note tail (up or down).

This operator is generated/refreshed for each note containing the decoration

In order to use it, from abcm2ps−4.9.4  on, it is necessary to set the  %%setdefl
command to true .

The first bit to the right defl  indicates if a long decoration is starting (0) or if it is a
continuation (1) (refers to the left end of the decoration);



Oct 29, 2006 19:02 9 abcm2ps−5.1.1

The second bit, from the right indicates if the long decoration is ending (0) or if it will be
continued on the next line (1) (refers to right end of the decoration);

The third bit from the right indicates if the tail is up (0) or down (1). It is useful to create
decorations that will change depending on the direction of the tail (for example, one that will be
drawn right on tail itself).

So, in order to check the state of the first bit (on the left end of a long decoration) you can use a
sequence of PostScript with the following structure:

defl 1 and 0 eq {
    % procedure in case the left end is the beginning of the decoration
}{
    % % procedure in case the left end is the continuation of the decoration
} ifelse

In order to check if the second bit (right end of a long decoration):

defl 2 and 0 eq {
    % procedure in case the right end is the end of the decoration
}{
    % procedure in case the right end is the continuation of the decoration
} ifelse

And in order to check the third bit (tail direction):

defl 4 and 0 eq {
    % procedure in case the tail is down
}{
    % procedure in case the tail is up
} ifelse

Examples:

The example below uses defl  to determine where the tail is so that a x  (sprechgesang) can
be drawn on it.

The decoration is declared is being one of type 1, because its position is always relative to the note
head. As a side effect, abcm2ps  leaves an extra space on the left of the note (where it would
usually be drawn) such type of decoration). In case you don’t want this extra space, the you can
declare a type 0 (or 3) and always use such decoration (together with the note) between square
bracket, as in a chord.

%%setdefl true
%%postscript /sprgsg{gsave T
%%postscript         defl 4 and 0 eq{1.5 −9}{8.5 9}ifelse T
%%postscript         .8 dup scale 0 0 dsh0 grestore}!

%%deco sprgsg 1 sprgsg 0 0 0

X:1
K:C
z4 !sprgsg!C !sprgsg!E !sprgsg!G2 | !sprgsg!c4 z4 |]

4
4



Oct 29, 2006 19:02 10 abcm2ps−5.1.1

In the following example an bracket below the staff is implemented (which can be used as
indication for piano pedal). The beginning and the end of this long decoration are detected thanks to
the defl  operator. Notice (in the score) that the bracket that starts in the last measure of the of
the first line remains ‘open’, as well as the left side of its continuation on the next line.

The fist line of PostScript code defines the defl  operator with zeros. This is totally
unnecessary (and has no effect) with abcm2ps−4.8.0  or more recent, but makes the code
compatible with earlier versions. When you use an earlier version of the program, the decoration
will always be be drawn with a beginning and an end.

%%setdefl 1
%%postscript /defl 0 def
%%postscript /bracket { exch 3 sub exch 1.2 setlinewidth
%%postscript             defl 1 and 0 eq{4 add M 0 −4 RL}{M}ifelse
%%postscript             7 add 0 RL
%%postscript             defl 2 and 0 eq{0 4 RL}if
%%postscript             stroke dlw}!

%%deco bracket( 7 − 12 0 0
%%deco bracket) 7 bracket 12 0 0

X:1
K:Am clef=treble−8
%
!bracket(! A,CEA ceac’  |  e’a’e’c’ aecA  |\
!bracket)! !bracket(! FA,CF Acfa  |  c’f’c’a fcAF  !bracket)! |\
!bracket(! DFAd fad’af  |
%
dafd AFDA,  !bracket)! !bracket(! |\
E,B,E^G Be^gb  |  !bracket)! !bracket(! e’b’e’b eBEE,  |\
A,EAc eac’e’  |  !bracket)! a’2 z2 z4  |]

8

4
4

8

The same principles could be applied to improve the examples of the type 5 and type 7 decorations
given earlier (lines for octave above and below).

Changing the note heads globally
In some cases it is desirable to change globally the note heads in order to ‘stylize’ the score or to
create special resources, for example. In order to accomplish this, you can just redefine the
PostScript operators which are in charge of drawing the note heads.



Oct 29, 2006 19:02 11 abcm2ps−5.1.1

The operators in abcm2ps  that draw note heads are:

hd     Black head, for fourth notes and shorter notes
Hd     Half note
HD     Whole note
HDD    Breve (rounded)
breve  Breve (square)
longa  Longa

pshhd  Used in a note with a sharp, when the clef is perc (abcm2ps−4.4.5)
pflhd  Used in a note with a flat, when the clef is perc (abcm2ps−4.4.5)
ghd    Black head for grace notes (ornaments)

All of these note heads store their position through the x  and y  operators. They are used to
position other symbols, like tails and augmentation dots

This implies that, in order to write other versions for the note heads, it is imperative to define x  e
y . There are at least two ways of accomplishing this:

(1) Use the operator xymove , which moves to the (x,y) point and saves its coordinates.

(2) Define x  and y  ‘manually’, in case you don’t want to move the (x,y) point. This can be
accomplished with:

/y exch def /x exch def

(which takes the two values on top of the stack and saves them as x  as y);

or with:

/x 2 index def /y 1 index def

(which takes the two values on top of the stack without deleting them).

Here is an example of redefining the note head in order to draw a melodic contour:

%%postscript /hdo/hd load bind def     % stores a copy of the original ‘hd’ 
%%postscript /xx 10000 def /yy 0 def   % initialize ‘previous note’
%%postscript /hd { xymove              % links to the previous note (left)
%%postscript 	     x xx gt {xx yy M x y lineto stroke} if
%%postscript 	     /xx x def /yy y def}!

X:1
L:1/8
M:none
K:C clef=perc stafflines=1  % (stafflines were introduced in abcm2ps−4.8.6)
[M:4/4] AFgG, ad’be’ | [M:7/16] c’’/a/e/b/ C/B/A/ | [M:3/8] E,3 |
%%postscript /hd/hdo load bind def     % restores original ‘hd’ 

4
4

16
7

8
3

Copyright (C) 2004−2005 Hudson Lacerda
Copyright (C) 2006 Eduardo Vieira da Silva (English Translation)
This document is released under the terms of the GNU General Public License, Version 2.
Este documento é distribuído segundo os termos da Licença Pública Geral do GNU, Versão 2.


